Magnetic Reconnection in Extreme Astrophysical Environments

Dmitri Uzdensky (Univ. of Colorado)

Workshop on Opportunities in Plasma Astrophysics PPPL, January 2010

Conventional Reconnection Research:

- Resistive MHD, two-fluid, or kinetic (PIC) studies of 2D or 3D reconnection in a plasma described as a collection of charged particles (electrons and ions or positrons) that are neither created or destroyed.
- Suitable for solar/stellar flares, Earth magnetosphere, laboratory plasma devices, pulsar magnetospheres at r ≈ R_{LC}, star-disk interaction, etc.

Reconnection in High-Energy Density (HED) Environments

- Particular example: reconnection of magnetar-strength (B>10¹³ G) magnetic fields
- New direction of reconnection research
- Astrophysical applications: magnetar magnetospheres,
 GRB central engines & jets.
- Rich and exotic physics
- Example of High-Energy-Density reconnection

Motivation I: Magnetar (SGR) Flares

- Magnetars: isolated neutron stars with 10¹⁵ Gauss fields.
- Soft Gamma Repeaters (SGRs): magnetars exhibiting powerful (up to $10^{44} 10^{46}$ ergs in ~ 0.3 sec) γ -ray flares.

Reconnection Interpretation: Thompson & Duncan 1995, 2001; Lyutikov 2003, 2006

Motivation II: long Gamma-Ray Bursts

Magnetic Tower jet inside a star

Differential rotation →
field-line twisting →
kink instability →
current sheet formation →
reconnection?

Motivation III: dissipation in GRB jets

 Dissipation in magnetically dominated GRB jet to power prompt γ-ray emission

McKinney & Uzdensky 2010

Physics of Extreme-field Reconnection

Critical Quantum Magnetic Field

Critical Quantum Magnetic Field:

$$\hbar\Omega_e = m_e c^2 \Rightarrow B_* \equiv \frac{m_e^2 c^3}{e\hbar} \simeq 4.4 \times 10^{13} \,\mathrm{G}.$$

Magnetic Energy Density:

$$\frac{B_*^2}{8\pi} = \frac{1}{8\pi} \left(m_e c^2 \right)^4 \alpha^{-1} \left(\hbar c \right)^{-3} \simeq 8 \times 10^{25} \,\mathrm{erg} \,\mathrm{cm}^{-3} \,.$$

-- High-Energy Density Physics Regime!

Critical novel physics issues (different from conventional reconnection)

- Radiation:
 - Radiation pressure
 - Radiative cooling
 - Compton resistivity
- Pair creation
- (special relativity)

Radiation and Pair Production

 Pressure balance across layer or energy conservation determine central temperature, T₀:

$$P_{\text{magn}} = \frac{B_0^2}{8\pi} = P_{\text{rad}} = \frac{a}{3} T_0^4 \implies \theta_e \equiv \frac{T}{m_e c^2} \simeq 2.2 \, b^{1/2}$$

 \rightarrow relativistically-hot plasma: $T \sim m_e c^2$! $(b \equiv B_0/B_*.)$

Pair Production

Copious pair production (Saha equilibrium):

$$n(\theta_e \ll 1) \simeq 2 \times 10^{30} \,\theta_e^{3/2} \,e^{-1/\theta_e} \,\mathrm{cm}^{-3}$$
,
 $n(\theta_e \gg 1) \simeq 3.2 \times 10^{30} \,\theta_e^3 \,\mathrm{cm}^{-3}$.

Current layer is dressed in optically-thick pair coat

Key Effects of Pair Production:

1. Reconnection is layer optically thick: $\tau = n \sigma \delta >> 1$

Yet, photon diffusion time across layer may be << global advection time along layer:

- radiative cooling dominates over advection.
- reconnection problem = radiative transfer problem!
- 2. Reconnection layer is highly collisional:

$$\delta_{SP} \gg d_e$$
 , ρ_e ~ $10^{-10}\,cm$, $~\lambda_{e,mfp}$ ~ $10^{-6}\,cm$.

- radiative resistive MHD should apply!
- resistive-MHD reconnection is still important!

Reconnection Switch to Trigger GRB Jet Dissipation (*McKinney & Uzdensky 2010*)

SUMMARY

- Reconnection of B \sim B_{*} \sim 4 x 10¹³ G fields is a new frontier in reconnection research --- example of High-Energy Density reconnection.
- High-Energy Astrophysics applications:
 - Magnetar flares (SGR giant flares);
 - GRB central engines and jets.
- Key physics issues:
 - pair production
 - radiation (and pair) pressure
 - Layer is optically thick
 - Radiative cooling across layer dominates over advection along layer
 - Reconnection becomes radiative transfer problem
 - Layer is highly collisional: $\delta_{SP} \gg d_e$, d_i , \Rightarrow resistive radiation-MHD
- Caveats and open questions abound!

Pairs trap radiation:

High pair density \Rightarrow layer is optically thick:

$$\tau = n \sigma \delta >> 1$$

- in sharp contrast with conventional reconnection.
- Yet, photon diffusion time across layer may be << global advection time along layer: $au_{\mathsf{rad},\mathsf{diff}} \sim rac{\delta}{c} \, au \ll au_A \equiv rac{L}{c} \, ,$

if
$$\tau \ll L/\delta$$

- Radiative cooling dominates over advection.
- Fundamentally, the reconnection problem becomes a radiative transfer problem!

Collisionality of Reconnection Layer

- EXAMPLE (Uzdensky & MacFadyen 2006):
- $B_0 = 0.5 B_* = 2 \times 10^{13} G$, $T \sim 300 \text{ keV}$, $n_e \sim 2 \times 10^{29} \text{ cm}^{-3}$.
- Spitzer resistivity: $\eta_S = 0.1 \text{ cm}^2/\text{sec}$ (photon drag gives comparable contribution)
- Typical global scale: L = 10 km
- Lundquist number: $S = Lc/\eta_S \sim 10^{18}$
- Sweet-Parker layer thickness: $\delta_{SP} = L S^{-1/2} \approx 10^{-3} \text{ cm}$.
- δ_{SP} \ll L, but $\delta_{SP} \gg d_e \sim 10^{-9}$ cm, $\rho_e \sim 10^{-10}$ cm, $\lambda_{e,mfp} \sim 10^{-6}$ cm.
- Thus, reconnection layer is highly collisional, resistive MHD (with Compton drag) should apply!

Additional Possible Complications:

- Quantum effects of the super-strong magnetic field on microphysics
 - discrete, quantized electron gyro-orbits (Landau levels);
 - effects on radiation propagation (e.g., photon splitting, suppression of Compton scattering).
- Relativistic motions: v ~ c ⇒ special-relativistic effects: Lorentz contraction, time dilation, etc.
- Optically-thin neutrino cooling: ee⁺ $\rightarrow vv^-$ Q_v⁻ ~ $10^{25} \, \text{T}_{\text{MeV}}^9 \, \text{erg cm}^{-3} \, \text{s}^{-1}$